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Abstract 

     Photovoltaic (PV) systems are indispensable in the renewable energy industry as they convert sunlight into electricity. 

Accurate determination of important factors such as illuminance and Ultraviolet (UV) irradiation is essential for 

optimizing the effectiveness and maintenance of these systems. The objective of this work is to evaluate the predictive 

performance of several Machine Learning (ML) models in estimating the amounts of light and UV radiation in PV 

systems, by comparing and contrasting their effectiveness. The models that were assessed include Support Vector 

Classification (SVC), Linear Regression (LR), eXtreme Gradient Boosting (XGBoost), Gradient Boosting (GB), Random 

Forest (RF), and CatBoost. The study employed a comprehensive dataset that encompassed measurements for 

temperature, humidity, UV, voltage, current, and illuminance. The data was preprocessed to remove invalid values and 

align indices. Afterwards, it was divided into separate training and testing sets. The main metrics used to train and 

evaluate each model were Root Mean Squared Error (RMSE) and the Coefficient of Determination (R²). The findings 

suggest that the Categorical Boosting (CatBoost) and RF models demonstrate greater performance in comparison to other 

models. This is evidenced by their ability to obtain the lowest RMSE and highest R² values for both illuminance and UV 

forecasts. More precisely, CatBoost algorithm obtained a RMSE of 16.088 and a R² of 0.999 for illuminance. 

Additionally, it achieved a RMSE of 0.228 and a R² of 0.990 for UV. However, LR and SVC had notably inferior results. 

The results offered valuable perspectives for enhancing decision-making procedures.  

Keywords: Photovoltaic systems, machine learning, illuminance prediction, UV irradiance prediction, renewable 

energy. 

1. Introduction

Photovoltaic (PV) systems utilize semiconductor

materials to directly turn sunlight into electricity. This 

process relies on the PV effect, which involves the 

conversion of light energy into electrical energy at the 

atomic scale. PV systems play a crucial role in generating 

renewable energy by effectively utilizing the ample solar 

resources that are accessible worldwide. Deploying these 

systems is crucial for diminishing reliance on finite fossil 

fuels, which make a substantial contribution to 

environmental degradation and climate change [1]. The 

increasing global deployment of PV systems highlights 

their significance in the energy environment. They provide 

a multitude of environmental and economic advantages, 

including the reduction of greenhouse gas emissions, the 

decrease in air pollution, and the provision of energy 

security. Technological breakthroughs and economies of 

scale have made solar energy increasingly cost-effective, 

positioning it as one of the most promising sources of 

renewable energy [2, 3]. 

The swift proliferation of PV systems is propelled by their 

capacity to alleviate the consequences of climate change 

and offer sustainable energy alternatives. Nations 

worldwide are making significant investments in solar 

power infrastructure, bolstered by advantageous 

governmental policies and incentives designed to 

encourage the adoption of renewable energy [4, 5]. 

Monitoring and forecasting the performance of PV 

systems present numerous difficulties. Precise 

performance prediction is essential for enhancing the 

efficiency and dependability of PV systems. Nevertheless, 

various environmental conditions, including temperature, 

humidity, Ultraviolet (UV) irradiation, dust deposition, 

and shadowing, can have a substantial influence on the 

efficiency and output of PV panels [6, 7]. High 

temperatures, for example, might lower the voltage output 

and increase internal resistance, therefore compromising 

the efficiency of PV cells. Dust collection and humidity 

can cause PV panels to soil, therefore compromising their 

capacity to efficiently absorb sunlight. Shading, from 

surrounding buildings, trees, or passing clouds, can 

drastically lower power output. Studies have indicated that 

dust can lower efficiency by about 11.86% [8, 9]. Shade 

can reduce power production by up to 92.6%. 

Furthermore, the dynamic character of solar irradiation 

and the different climatic circumstances call for advanced 

monitoring and forecasting models to sustain the best PV 

performance. Artificial neural networks and other cutting-

edge Machine Learning (ML) methods have shown 

promise in enhancing the accuracy of performance 

predictions and in PV system anomaly detection [10, 11]. 
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Maximum performance and maintenance of PV systems 

depend on accurate predictive models. By allowing timely 

maintenance and so reducing downtime, these models can 

greatly improve the efficiency and sustainability of PV 

systems so guaranteeing that the systems run at their best  

            [12, 13]. Better energy management, significant 

cost savings, and increased system dependability can 

follow from accurate forecasts of PV system performance. 

Predictive maintenance models, for example, can foresee 

failures and schedule repairs before problems get more 

severe, therefore lowering running costs and extending the 

lifetime of PV installations [14, 15]. To improve the 

forecasting accuracy for certain parameters in PV systems, 

ML techniques have been progressively used. Particularly 

helpful for forecasting solar irradiation, system 

performance, and maintenance needs [16, 17]. these 

algorithms can process enormous volumes of data and find 

intricate patterns that older approaches might overlook. 

ML has demonstrated significant potential in renewable 

energy research for optimizing systems, detecting defects, 

and predicting energy output. Support vector regression 

(SVR) and Adaptive Neuro-Fuzzy Inference System 

(ANFIS) have been utilized to accurately forecast PV 

power generation. This application has resulted in 

enhanced grid stability and improved integration of solar 

energy into the electrical grid [18, 19]. 

The primary aim of this work is to assess and contrast the 

efficacy of several ML models in forecasting illuminance 

and UV irradiance in PV systems. The research tries to 

determine the most successful models for crucial 

parameters by analyzing the performance of several 

algorithms, such as SVC, Linear Regression (LR), 

eXtreme Gradient Boosting (XGBoost), Gradient 

Boosting (GB), Random Forest (RF), and CatBoost. In 

addition, the study aims to comprehend the impact of 

several environmental conditions, such as temperature, 

humidity, and voltage, on the precision of these forecasts. 

The study will yield significant information that may be 

used to make recommendations for enhancing the 

monitoring and performance optimization of PV systems 

in the future. The importance of this study is in its capacity 

to enhance the field of solar performance monitoring. The 

results can provide significant advantages to professionals 

in the industry, researchers, and policymakers by 

improving the forecasting skills of various ML models. 

This will result in more precise and dependable monitoring 

of PV systems. Moreover, the study's data-driven insights 

might assist in making well-informed selections about the 

implementation, administration, and upkeep of PV 

systems. 

This work proposes the utilization of ML models to 

forecast important factors, such as illuminance and UV 

irradiation, in order to enhance the monitoring and 

optimization of PV system performance. Existing 

approaches to forecast the performance of PV systems are 

frequently constrained by their dependence on linear 

models or oversimplified assumptions, neglecting the 

many environmental and operational factors that impact 

PV efficiency. This project intends to enhance the 

accuracy of forecasts by utilising modern machine learning 

techniques. The goal is to provide more trustworthy 

insights for improving energy production and system 

maintenance. This work is significant because it tackles the 

increasing worldwide need for renewable energy by 

providing creative ideas to enhance the efficiency of solar 

energy systems. 

Table 1 presents a thorough comparison of many research 

that concentrate on predicting solar irradiance using 

different ML techniques. Demir et al. [20] utilised 

Transformer and Rolling LSTMs to analyze a decade's 

worth of data from the Texas Mesonet Data Archive. Their 

approach yielded precise predictions for the short-term, 

but encountered difficulties in accurately forecasting long-

term outcomes, mostly owing to the need for fine-tuning 

hyperparameters. Li and He [21] utilised an Enhanced 

Incremental Extreme Learning Machine to analyse 

historical irradiance data. This approach resulted in 

minimal prediction errors, but its effectiveness was 

constrained by the exclusive reliance on irradiance data as 

input. 

Alzahrani [22] employed an Adaptive Extreme Learning 

Machine utilising hourly meteorological data from Najran 

University. The model achieved a high level of prediction 

accuracy, but its applicability was restricted due to its 

concentration on a single geographical region. Viscondi 

and Alves-Souza [23] applied a hybrid approach using 

Support Vector Machine (SVM), Artificial Neural 

Network (ANN), and Extreme Learning Machine (ELM) 

models to analyse a dataset from São Paulo, Brazil. Their 

investigation demonstrated that Support Vector Machine 

(SVM) yielded the lowest Root Mean Square Error 

(RMSE), notwithstanding the influence of regional 

weather variability on the models' performance. Aliberti et 

al. [24] performed a comparative investigation of neural 

networks, namely Non-Linear Autoregressive and LSTM 

models, utilising GHI data collected at 15-minute 

intervals. The study revealed that the implementation of 

the Echo State Network and clear-sky index filtering had a 

substantial positive impact on the accuracy of forecasting. 

It is important to note that the study specifically 

concentrated on neural networks. 

Finally, Huang et al. [25] proposed a hybrid deep neural 

model for hourly solar irradiance forecasting based on 

weather and irradiance data, achieving strong results but 

requiring significant computational resources. Maitanova 

et al. [26] explored a ML approach using publicly available 

weather reports, emphasizing the cost-effective nature of 

their model but acknowledging the limitations posed by 

the availability and quality of public data sources. 

Table 1 underscores the diverse methodologies and 

datasets used, highlighting both the advancements and 

limitations in solar irradiance prediction. 
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 Table 1. Recent studies on ML-Based solar irradiance prediction and PV system performance optimization.

 
 

  

2.  Methodology 

2.1 Data Presentation 
 

    In this section, we present the key visualizations 

derived from the dataset to provide an in-depth 

understanding of the features and their relationships. Fig. 

1 showcases histograms of all features to illustrate the 

frequency distribution of each variable. The features 

include Fig. 1(a) Temperature, Fig. 1(b) Humidity, Fig. 

1(c) UV, Fig. 1(d) Voltage, Fig. 1(e) Current, and Fig. 1(f) 

Illuminance. These histograms help to visualize the 

distribution and range of values for each feature. Fig. 2 

presents box plots for all features, which highlight the 

spread and potential outliers in the dataset. The features 

include Fig. 2(a) Temperature, Fig. 2(b) Humidity, Fig. 

2(c) UV, Fig. 2(d) Voltage, Fig. 2(e) Current, and Fig. 2(f) 

Illuminance. Box plots are essential for understanding the 

central tendency and variability of the data. 

    Fig. 3 displays the correlation matrix as a heatmap. Fig. 

3 indicates the strength and direction of linear 

relationships between pairs of features, including 

Temperature, Humidity, UV, Voltage, Current, and 

Illuminance. High correlation values (close to 1 or -1) 

suggest a strong relationship, while values close to 0 

suggest a weak or no relationship. Fig. 4 shows the scatter 

plot of Voltage vs. Current. This plot helps in visualizing 

the relationship between these two electrical parameters, 

revealing any underlying patterns or trends. Fig. 5 

presents the scatter plot of Temperature vs. Voltage. This 

visualization helps in understanding how voltage varies 

with temperature changes, providing insights into thermal 

effects on electrical performance. Fig. 6 depicts the scatter 

plot of UV vs. Illuminance. This plot illustrates the 

relationship between UV irradiance and illuminance, 

which are both critical factors influencing the 

performance of PV panels. 

The dataset comprises 5801 records collected from a PV 

panel monitoring system over several days. Each record 

includes measurements of various environmental and 

electrical parameters: Temperature (in degrees Celsius), 

Humidity (in percentage), UV irradiance (in mW/cm²), 

Voltage (in volts), Current (in amperes), and Illuminance 
(in lux). 

 
 
 
 

 

Study Year Algorithms Used Dataset Characteristics Key Findings Limitations 

[20] 2022 
Transformer, Rolling 

LSTMs 

10 years of data from 

Texas Mesonet Data 

Archive 

Transformer model shows accurate 

short-term irradiance prediction but 

less accurate in the long term. 

Long-term prediction requires 

hyperparameter tuning. 

[21] 2022 

Enhanced Incremental 

Extreme Learning 

Machine 

Historical irradiance 
data 

Enhanced extreme learning machine 

offers smaller prediction errors than 

standard models. 

Only irradiance data is used as 
input, limiting prediction scope. 

[22] 2022 
Adaptive Extreme 
Learning Machine 

Hourly weather data 
from Najran University 

High accuracy in predicting solar 
irradiance with low MSE and MAE 

values. 

Focused on a specific geographical 
area, limiting generalization. 

[23] 2021 
SVM, ANN, Extreme 
Learning Machine 

São Paulo, Brazil dataset 
(1933-2014) with 10 

meteorological 
parameters 

SVM produced the lowest RMSE, 
while ELM showed faster training 

rates. 

Meteorological variability across 
regions affects model accuracy. 

[24] 2021 

Non-Linear 
Autoregressive, Feed-
Forward, LSTM, Echo 

State Network 

GHI values sampled 
every 15 minutes 

Echo State Network and clear-sky 
index filtering showed best 

accuracy for GHI predictions. 

Focused on specific neural 
networks, limiting comparisons 

with other machine learning 
techniques. 

[25] 2021 

WPD-CNN-LSTM-MLP 
(Wavelet Packet 

Decomposition + CNN + 
LSTM + MLP) 

Hourly solar irradiance 
and three climate 

variables (temperature, 
humidity, wind speed) 

Hybrid model outperforms 
standalone models in irradiance 

forecasting, achieving more 
accurate results. 

Computational complexity 
increases significantly. 

[26] 2020 
Long Short-Term 

Memory 

Publicly available 
weather data without 
solar irradiance values 

The model can predict PV power 
with reasonable accuracy using only 

publicly available weather data. 

Requires large training sets for 
adequate predictions with publicly 

available data. 
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Fig. 1. Histograms of all features - (a) Temperature, (b) Humidity, (c) UV, (d) Voltage, (e) Current, (f) Illuminance. 

 
 

    Fig. 1 shows the histograms of every feature to 

underline the frequency distribution of every dataset 

variable. Fig. 1(a) shows the temperature histogram, and 

it is clear from the right-skewed distribution that most 

values occur between 0°C and 20°C and that frequency 

decreases clearly with increasing temperatures. Showed 

in Fig. 1(b), the humidity histogram displays a rather 

symmetric distribution with a peak between 30% and 40% 

humidity. Fig. 1(c) shows the UV irradiation histogram 

with a rather right-skewed distribution with most values 

close to 0 mW/cm². The behavior of the solar panel in 

several operational phases is suggested by the clustering 

of values near 0 V and roughly 20 V in Fig. 1(d). Fig. 1(e) 

shows the current histogram now, which once more shows 

a right-skewed distribution with a secondary peak about 3 

A and most current values close to 0 A. Finally illustrated 

in Fig. 1(f), the histogram of illumination displays a 

distribution with most values around 0 and a secondary 

peak on the custom scale near 1000. These histograms 

clarify the variability and central patterns of every feature 

by showing its range of values. 
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Fig. 2. Box plots of all features - (a) Temperature, (b) Humidity, (c) UV, (d) Voltage, (e) Current, (f) Illuminance. 

 

    Fig. 2 exhibits box plots for all features in the dataset 

to emphasize the dispersion and any anomalies. Fig. 2(a) 

displays the box plot of temperature, with the interquartile 

range (IQR) ranging from roughly 10°C to 20°C, and a 

median value of around 15°C. This suggests that the 

majority of temperature readings fall within this specific 

range, while a small number of exceptional results go as 

high as 40°C. Fig. 2(b) displays the box plot of Humidity, 

showing that the IQR spans from 20% to 40%, and the 

median is approximately 30%. This indicates that the bulk 

of humidity measurements fall within this range, with 

very few exceptions. Fig. 2(c) displays the box plot of UV 

irradiance, illustrating a significantly skewed distribution 

with the bulk of values falling between 0 and 2 mW/cm², 

and a few outliers reaching as high as 8 mW/cm². This 

suggests that although the majority of UV values are 

modest, there are sporadic instances of high readings. Fig. 

2(d) presents a box plot of voltage, showing that the IQR 

spans from 5 V to 15 V. The median value is 

approximately 10 V, suggesting a broad distribution of 

voltage values, with a few values reaching as high as 20 

V. Fig. 2(e) displays a box plot of the current variable, 

indicating an IQR ranging from around 0.5 A to 2 A, with 

a median value close to 1.5 A. This suggests that the 

majority of current values are inside this range, with only 

a few exceptional cases. Fig. 2(f) shows a box plot of 

Illuminance, with an IQR ranging from 0 to 1000 on a 

customized scale. This indicates that the illuminance 

values are distributed throughout the whole range of 

measurements. The box plots offer a comprehensive 

depiction of the central tendencies, variability, and 

probable outliers for each feature in the dataset, 

facilitating a lucid comprehension. 
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Fig. 3. Correlation matrix - Correlation heatmap of Temperature, Humidity, UV, Voltage, Current, and Illuminance. 

 

Fig. 3 depicts a heatmap that illustrates the correlation 

matrix. This matrix depicts the magnitude and orientation 

of linear correlations among several attributes, such as 

temperature, humidity, UV, voltage, current, and 

illuminance. The correlation coefficients range from -1 to 

1, with values near 1 indicating a strong positive 

relationship, values around -1 indicating a strong negative 

correlation, and values around 0 indicating no linear 

association. After examining this heatmap, it is clear that 

temperature is strongly positively correlated with UV 

(0.85), Voltage (0.90), and current (0.90). Therefore, a 

rise in temperatures will result in a proportional increase 

in these factors. On the other hand, there is a significant 

negative correlation (-0.74) between temperature and 

humidity, indicating that higher temperatures are 

associated with lower humidity levels. The correlation 

study demonstrates that humidity has significant negative 

relationships with UV (-0.66), Voltage (-0.71), and 

Current (-0.70), indicating that higher humidity levels are 

connected with lower values of these electrical 

parameters. UV irradiance has positive significant 

relationships with Voltage (0.91) and Current (0.91), 

suggesting that higher UV levels result in higher voltage 

and current outputs from solar panels. The correlation 

coefficient between voltage and current is 1.00, indicating 

a perfect relationship. This is in line with expectations in 

electrical systems, where these two variables are strongly 

interconnected. Ultimately, Illuminance has a notable and 

affirmative correlation with all variables, with the 

exception of Humidity. The most prominent connections 

are observed with Voltage (0.77) and Current (0.77), 

suggesting that higher levels of illuminance generally 

result in greater levels of electrical output. This heatmap 

provides a detailed depiction of the relationships between 

the features, which is crucial for understanding the core 

patterns and linkages within the dataset. 
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Fig. 4. Scatter plot of Voltage vs. Current. 

 
 

 

Fig. 5. Scatter plot of Temperature vs. Voltage. 

 
 

 

Fig. 6. Scatter plot of UV vs. Illuminance. 

 

    Fig. 4 is a scatter plot of voltage versus current, 

indicating a strong linear connection between these two 

electrical parameters. The diagram illustrates that when 

the voltage increases, so does the current, suggesting a 

straight proportionality compatible with Ohm's rule. This 

linear trend demonstrates the solar panel's predictable 

performance under different voltage circumstances. Fig. 5 

depicts a more intricate relationship between temperature 

and voltage using a scatter plot. The graphic shows that 

voltage fluctuates dramatically with temperature 

variations, with many clusters of data points. This 

suggests that temperature has a nonlinear effect on the 

voltage output of the solar panel, most likely due to varied 

operating states and external conditions influencing the 

panel's performance. Fig. 6 depicts a scatter plot of UV 

vs. Illuminance, demonstrating that increased UV 

irradiance corresponds to higher illuminance values. The 

plot shows a quick rise in illuminance as UV irradiance 

increases, followed by a plateau at higher UV levels. This 

suggests that, whereas UV irradiance has a substantial 

impact on illuminance, other variables may play a role at 

higher UV levels. 

2.2 ML Algorithms 
 

    The procedure starts with loading and prepping the 

information. This involves importing data from a CSV file 

into a pandas "DataFrame" and eliminating superfluous 

columns to concentrate on the pertinent characteristics 

and objectives. The characteristics, with the exception of 

'Illuminance' and 'UV', are clearly specified, and the 

objectives are established as 'Illuminance' and 'UV'. In 

order to maintain the accuracy and consistency of the data, 

any rows that contain incorrect values such as infinity or 

NaN are eliminated. Additionally, the indices of the 

features and targets are adjusted to guarantee proper 

alignment once these rows are dropped. Subsequently, the 

dataset is partitioned into separate training and testing sets 

for both illuminance and UV goals, guaranteeing that the 

model may be assessed on data that it has not been 

exposed to previously. Several ML models, such as 

XGBoost, RF, LR, SVC, GB, and CatBoost, are 

initialized. Subsequently, each model undergoes training 

on the training set and assessment on the test set, 

considering both illuminance and UV goals. This 

evaluation process employs metrics like Root Mean 

Square Error (RMSE) and Coefficient of Determination 

(R²). The outcomes from the several models are merged 

into a unified "DataFrame" and stored in a CSV file for 

subsequent study. The outcomes are represented 

graphically using several graphs, such as RMSE and R² 

for each model, along with a heatmap illustrating the 

correlation matrix. Ultimately, the outcomes are presented 

for examination. This systematic methodology utilizes 

several ML models to forecast important output variables 

by analyzing environmental and electrical input 

characteristics. This process yields significant 

information on the efficiency and effectiveness of solar 

panels. The flowchart depicted in Fig. 7 succinctly 

represents each stage of this process, guaranteeing 

lucidity and facilitating comprehension. 
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Fig. 7. Flowchart of the methodology for predicting illuminance and UV irradiance in PV systems. 

 

    Table 2 presents a comprehensive comparison of the 

ML techniques employed in the prediction of illuminance 

and UV irradiance in PV systems. The examined 

algorithms are SVC, LR, XGBoost, GB, RF, and 

CatBoost. Every algorithm possesses unique attributes, 

advantages, and limitations. For example, Support Vector 

Classification (SVC) is highly efficient in spaces with a 

large number of dimensions and may be used with various 

kernel functions. However, it necessitates meticulous 

parameter adjustment and is computationally demanding 

when dealing with extensive datasets. LR is a 

straightforward and efficient method, although it relies on 

the assumption of linearity and is highly responsive to 

outliers [27]. However, ensemble approaches such as 

XGBoost and RF exhibit superior accuracy and resilience 

to noise, but at the cost of increased complexity in terms 

of tuning and interpretation. Categorical Boosting 

(CatBoost) has exceptional performance in managing 

categorical data and training efficiency, while it may 

require significant memory resources. This comparison 

elucidates the appropriateness of each algorithm for 

distinct categories of data and prediction assignments, 

providing guidance for the selection process in particular 

applications of PV system performance monitoring. 
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Table 2. Comparative overview of ML algorithms.

Algorithm Type Key Characteristics Strengths Weaknesses 

SVC  

[28, 29]. 

Supervised 

(Classification & 

Regression) 

Uses support vectors; 

kernel trick for non-linear 

data 

Effective in high-

dimensional spaces; 

versatile 

Requires parameter 

tuning; computationally 

expensive for large 

datasets 

LR  

[30-32]. 

Supervised 

(Regression) 

Models linear relationships; 

minimizes squared errors 

Simple and 

interpretable; fast 

Assumes linearity; 

sensitive to outliers 

XGBoost 

[33]. 

Ensemble 

(Boosting) 

Optimized GB; uses 

decision trees 

High accuracy; 

handles large 

datasets 

Complex tuning; may 

overfit on small datasets 

GB  

[34, 35]. 

Ensemble 

(Boosting) 

Sequential error correction; 

uses decision trees 

High predictive 

accuracy; handles 

complex data 

Prone to overfitting; 

computationally intensive 

RF  

[36, 37]. 

Ensemble 

(Bagging) 

Multiple decision trees; 

merges predictions 

Reduces 

overfitting; robust 

to noise 

Less interpretable; slow 

for large datasets 

CatBoost 

[38]. 

Ensemble 

(Boosting) 

Categorical feature support; 

efficient Graphics 

Processing Unit (GPU) 

usage 

Excellent on 

categorical data; 

fast training 

Memory intensive; fewer 

resources available 

2.3 Evaluation Metrics 
 

    For this work, we employed two main assessment 

metrics to gauge the effectiveness of the ML models: 

RMSE and the R². These metrics offer valuable 

information on the precision and ability of the models to 

forecast illuminance and UV irradiance in solar systems. 

RMSE is a frequently employed metric for quantifying the 

average magnitude of the discrepancies between expected 

and actual data [39]. The square root of the mean squared 

difference between expected and actual values. RMSE is 

defined Equation (1). Where 𝑛 is the number of 

observations, 𝑦𝑖  is the actual value, and �̂�𝑖 is the predicted 

value. RMSE is sensitive to outliers and gives a higher 

weight to larger errors, with a lower RMSE indicating a 

better fit of the model to the data [39].  

On the other hand, the R² measures the proportion of the 

variance in the dependent variable that is predictable from 

the independent variables. It provides an indication of 

how well the model's predictions match the actual data 

[40]. R² is defined by Equation (2). Where 𝑦𝑖  is the actual 

value, �̂�𝑖 is the predicted value, and �̄� is the mean of the 

actual values. R² values vary from 0 to 1, with values 

closer to 1 suggesting a higher proportion of the variance 

is accounted for by the model, indicating a more accurate 

fit. The selection of these measures was based on their 

capacity to offer a thorough assessment of model 

performance, striking a balance between minimizing 

prediction errors and maximizing the models' explanatory 

capability. The investigation involved calculating and 

analyzing the RMSE and R² values of the models for 

predicting both illuminance and UV. This was done to 

identify the algorithms that performed the best. 

 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1  (1) 

           𝑅2 = 1 −
∑ (𝑦𝑖−�̂�𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖−�̄�)
2𝑛

𝑖=1

               (2) 

3. Results and Discussion 

    This study assessed the efficacy of several ML models 

in forecasting illuminance and UV irradiance in solar 

systems. The evaluated models consist of XGBoost, RF, 

LR, SVC, GB, and CatBoost. The models are evaluated 

using the performance metrics of RMSE and the R². The 

findings are succinctly presented in Table 3 and visually 

shown in Fig. 8, Fig. 9, Fig. 10, and Fig. 11. 

Table 3 presents a comprehensive analysis of the 

performance metrics of the models. Table 3 clearly 

demonstrates that the CatBoost and RF models 

outperform others in predicting both illuminance and UV 

since they have the lowest RMSE and greatest R² values. 

CatBoost algorithm obtained an RMSE of 16.088 and an 

R² of 0.999 for illuminance. Additionally, it achieved an 

RMSE of 0.228 and an R² of 0.990 for UV. The RF model 

has a close correlation with an RMSE of 16.568 and an R² 

value of 0.999 for illuminance. Similarly, it exhibits an 

RMSE of 0.233 and an R² value of 0.990 for UV. LR and 

SVC, on the other hand, had noticeably worse results. The 

LR model achieved an RMSE of 259.031 and an R² of 

0.683 for illuminance. For UV, the model produced an 

RMSE of 0.943 and an R² of 0.833. The Support Vector 

Classifier (SVC) had the greatest RMSE and the lowest 

R² values compared to the other models. Specifically, the 

RMSE for illuminance was 318.890 with an R² of 0.520, 

whereas the RMSE for UV was 0.756 with an R² of 0.893. 
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These findings suggest that non-linear models such as 

CatBoost and RF are more appropriate for predicting 

intricate relationships within the dataset, as opposed to 

linear models. Fig. 8 and Fig. 9 display the R² and RMSE 

values for several models used to forecast illuminance. 

The statistics clearly demonstrate that CatBoost and RF 

models outperform other models by a substantial margin. 

The models with higher R² values and lower RMSE 

values demonstrate a stronger fit and reduced prediction 

error, respectively. Fig. 10 and Fig. 11 display the R² and 

RMSE values for several models used to forecast UV 

irradiation. Like the illuminance predictions, CatBoost 

and RF exhibit exceptional performance, emphasizing 

their resilience and precision in capturing the fundamental 

patterns in the data. The impressive performance of the 

CatBoost and RF models may be ascribed to their 

adeptness in successfully managing non-linear 

connections and interactions among features. These 

models also have the advantage of being able to 

effectively handle missing values and outliers, which are 

frequently encountered in real-world datasets. The 

findings indicate that sophisticated ML models, such as 

CatBoost and RF, have improved forecast accuracy for 

both illuminance and UV irradiance in solar systems. The 

findings indicate that integrating these models into solar 

performance monitoring systems may greatly improve the 

precision and dependability of forecasts, therefore 

enhancing the overall efficiency of the system and 

decision-making procedures. Additional studies might 

investigate the incorporation of these models with real-

time data gathering and adaptive learning methods to 

consistently enhance the accuracy of predictions over a 

period of time. 

Table 3. Reordered model performance from less efficient to 

more efficient based on RMSE and R² metrics for illuminance 

and UV predictions. 

Model Illuminance 

RMSE 

Illuminance 

R² 

UV 

RMSE 

UV 

R² 

SVC 318.890 0.520 0.756 0.893 

LR 259.031 0.683 0.943 0.833 

XGBoost 19.290 0.998 0.258 0.988 

GB 16.594 0.999 0.254 0.988 

RF 16.568 0.999 0.233 0.990 

CatBoost 16.088 0.999 0.228 0.990 

 

 

Fig. 8. R² of Different Models for Illuminance. 

 

Fig. 9. RMSE of Different Models for Illuminance. 

 

Fig. 10. R² of Different Models for UV. 

 

Fig. 11. RMSE of Different Models for UV. 
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4. Conclusion 

    This study has undertaken a comprehensive evaluation 

and comparison of various ML models for predicting the 

levels of illuminance and UV irradiation in solar systems. 

We have demonstrated the effectiveness of many models, 

including SVC, LR, XGBoost, GB, RF, and CatBoost, in 

accurately predicting important factors that affect the 

efficiency of PV panels. The results indicated that the 

CatBoost and RF models outperformed the other models. 

They obtained the lowest RMSE and the highest R² values 

for predicting both illuminance and UV. The results 

demonstrate the effectiveness of sophisticated ML 

techniques in enhancing the precision of forecasts and the 

productivity of PV systems. The preparation procedures, 

which involved data cleansing and alignment, together 

with a reliable division of data into training and testing 

sets, guaranteed that the models were trained and assessed 

using data of superior quality. The meticulous 

methodology employed enhanced the dependability of the 

findings and underscored the significance of 

comprehensive data preprocessing in ML endeavors. The 

study's findings are beneficial for enhancing system 

efficiency and facilitating decision-making processes for 

solar performance monitoring. By making precise 

forecasts of illuminance and UV irradiance, individuals 

involved may optimize the timing of maintenance tasks, 

improve techniques for managing energy, and eventually 

enhance the overall efficiency of PV installations. 

Moreover, this study adds to the expanding corpus of 

work on the utilization of ML in renewable energy, 

establishing a strong basis for future progress in this 

domain. With the increasing need for sustainable energy 

solutions, the incorporation of advanced predictive 

models will be essential in optimizing the effectiveness of 

renewable energy sources. To summarize, the results of 

this study confirm that CatBoost and RF models are 

effective in forecasting important parameters in solar 

systems. This provides a technique to enhance the 

efficiency and dependability of renewable energy 

solutions. 

5. Future work 

    While this work revealed the efficacy of multiple ML 

models in forecasting illuminance and UV irradiance in 

PV systems, significant areas for future research remain. 

First, further research might look into integrating real-

time data acquisition systems with predictive models to 

improve prediction timeliness and accuracy. 

Incorporating streaming data would enable continuous 

monitoring and fast modifications, increasing the 

operational efficiency of PV systems. Furthermore, future 

research could look into the use of more advanced ML 

techniques, such as Deep Learning (DL), which may 

perform better in capturing complex, non-linear 

relationships in data. It is worthwhile to investigate how 

Convolutional Neural Networks (CNNs) and Recurrent 

Neural Networks (RNNs) might improve prediction 

accuracy. Examining the effects of various geographic 

locations and environmental variables on the model's 

performance is another important subject for future 

research. Expanding the dataset to encompass additional 

climatic zones would offer a more thorough assessment of 

the models' resilience and suitability. To further improve 

the model's performance, feature engineering techniques 

should be investigated to produce new and more insightful 

features. By using existing characteristics or including 

more environmental information, such as wind speed or 

solar angle, one can gain a more profound understanding 

and enhance predictive abilities. The creation of hybrid 

models that combine the strengths of various algorithms 

could be pursued. Ensemble methods, for example, that 

combine DL and standard ML models may produce 

higher accuracy and resilience results. Finally, future 

research should focus on using real-time data, advanced 

ML techniques, and various datasets to improve the 

predictive capacities of PV systems models. These 

activities will help to improve the efficiency and 

reliability of renewable energy solutions, thereby 

facilitating the ongoing shift to sustainable energy 

sources. 

Abbreviations 

ANFIS Adaptive Neuro-Fuzzy  

Inference System 

CatBoost Categorical Boosting 

CNN Convolutional Neural Network 

CSV Comma-Separated Values 

DL Deep Learning 

GB Gradient Boosting 

GPU Graphics Processing Unit 

IQR Interquartile Range 

LR Linear Regression 

ML Machine Learning 

PV Photovoltaic 

RF Random Forest 

R² Coefficient of Determination 

RNN Recurrent Neural Network 

RMSE Root Mean Squared Error 

SVR Support Vector Regression 

SVC Support Vector Classification 

UV Ultraviolet 

XGBoost eXtreme Gradient Boosting 

 

References 

[1] Abdelsattar, M., AbdelMoety, A., & Emad-

Eldeen, A. (2024). Comparative Analysis of 

Machine Learning Techniques for Fault 

Detection in Solar Panel Systems. SVU-



International Journal for Holistic Research, Vol. 2, No. 2. Jan 2025 

12 
  

International Journal of Engineering Sciences 

and Applications, 5(2), 140-152. doi: 

https://doi.org/10.21608/svusrc.2024.279389.1

198   

[2] Abdelsattar, M., AbdelMoety, A., & Emad-

Eldeen, A. (2023). A review on detection of 

solar PV panels failures using image processing 

techniques. In 2023 24th International Middle 

East Power System Conference (MEPCON) (pp. 

1-6). Mansoura, Egypt. 

https://doi.org/10.1109/MEPCON58725.2023.1

0462371  

[3] Jiang, S., Wan, C., Chen, C., Cao, E., & Song, 

Y. (2018). Distributed photovoltaic generation 

in the electricity market: status, mode and 

strategy. CSEE Journal of Power and Energy 

Systems. 

https://doi.org/10.17775/CSEEJPES.2018.0060

0.  

[4] Sygletou, M., Petridis, C., Kymakis, E., & 

Stratakis, E. (2017). Advanced Photonic 

Processes for Photovoltaic and Energy Storage 

Systems. Advanced Materials, 29. 

https://doi.org/10.1002/adma.201700335.  

[5] Wu, Y., Lin, J., & Lin, H. (2016). Standards and 

Guidelines for Grid-Connected Photovoltaic 

Generation Systems: A Review and 

Comparison. IEEE Transactions on Industry 

Applications, 53, 3205-3216. 

https://doi.org/10.1109/IAS.2016.7731810.  

[6] Souza, G., Santos, R., & Saraiva, E. (2022). A 

Log-Logistic Predictor for Power Generation in 

Photovoltaic Systems. Energies. 

https://doi.org/10.3390/en15165973.  

[7] Ma, T., Guo, Z., Shen, L., Liu, X., Chen, Z., 

Zhou, Y., & Zhang, X. (2021). Performance 

modelling of photovoltaic modules under actual 

operating conditions considering loss 

mechanism and energy distribution. Applied 

Energy, 298, 117205. 

https://doi.org/10.1016/J.APENERGY.2021.11

7205.  

[8] Mustafa, R., Gomaa, M., Al-Dhaifallah, M., & 

Rezk, H. (2020). Environmental Impacts on the 

Performance of Solar Photovoltaic Systems. 

Sustainability. 

https://doi.org/10.3390/su12020608.  

[9] Ramli, M., Prasetyono, E., Wicaksana, R., 

Windarko, N., Sedraoui, K., & Al-Turki, Y. 

(2016). On the investigation of photovoltaic 

output power reduction due to dust accumulation 

and weather conditions. Renewable Energy, 99, 

836-844. 

https://doi.org/10.1016/J.RENENE.2016.07.06

3.  

[10] Spataru, S., Sera, D., Kerekes, T., & 

Teodorescu, R. (2013). Photovoltaic array 

condition monitoring based on online regression 

of performance model. 2013 IEEE 39th 

Photovoltaic Specialists Conference (PVSC), 

0815-0820. 

https://doi.org/10.1109/PVSC.2013.6744271.  

[11] Spiliotis, E., Legaki, N., Assimakopoulos, 

V., Doukas, H., & Moursi, M. (2018). Tracking 

the performance of photovoltaic systems: a tool 

for minimising the risk of malfunctions and 

deterioration. Iet Renewable Power Generation, 

12, 815-822. https://doi.org/10.1049/IET-

RPG.2017.0596.  

[12] Mofidul, R., Alam, S., Chakma, A., Chung, 

B., & Jang, Y. (2023). Predictive Maintenance 

in Photovoltaic Systems Using Ensemble ML 

Empirical Analysis. 2023 Fourteenth 

International Conference on Ubiquitous and 

Future Networks (ICUFN), 636-638. 

https://doi.org/10.1109/ICUFN57995.2023.101

99326.  

[13] Livera, A., Paphitis, G., Theristis, M., 

Lopez-Lorente, J., Makrides, G., & Georghiou, 

G. (2022). Photovoltaic System Health-State 

Architecture for Data-Driven Failure Detection. 

Solar. https://doi.org/10.3390/solar2010006.  

[14] Hopwood, M., & Gunda, T. (2022). 

Generation of Data-Driven Expected Energy 

Models for Photovoltaic Systems. Applied 

Sciences. https://doi.org/10.3390/app12041872.  

[15] Goudelis, G., Lazaridis, P., & Dhimish, M. 

(2022). A Review of Models for Photovoltaic 

Crack and Hotspot Prediction. Energies. 

https://doi.org/10.3390/en15124303.  

[16] Achouri, F., Damou, M., Harrou, F., Sun, 

Y., & Bouyeddou, B. (2023). Gaussian 

Processes for Efficient Photovoltaic Power 

Prediction. 2023 International Conference on 

Decision Aid Sciences and Applications 

(DASA), 290-295. 

https://doi.org/10.1109/DASA59624.2023.1028

6780.  

[17] Lara-Cerecedo, L., Hinojosa, J., Pitalua-

Diaz, N., Matsumoto, Y., & González-Ángeles, 

Á. (2023). Prediction of the Electricity 

Generation of a 60-kW Photovoltaic System 

with Intelligent Models ANFIS and Optimized 

ANFIS-PSO. Energies. 

https://doi.org/10.3390/en16166050.  

[18] Das, U., Tey, K., Idris, M., Mekhilef, S., 

Seyedmahmoudian, M., Stojcevski, A., & 

Horan, B. (2022). Optimized Support Vector 

Regression-Based Model for Solar Power 

Generation Forecasting on the Basis of Online 

Weather Reports. IEEE Access, PP, 1-1. 

https://doi.org/10.1109/ACCESS.2022.3148821

.  

https://doi.org/10.21608/svusrc.2024.279389.1198
https://doi.org/10.21608/svusrc.2024.279389.1198
https://doi.org/10.1109/MEPCON58725.2023.10462371
https://doi.org/10.1109/MEPCON58725.2023.10462371
https://doi.org/10.17775/CSEEJPES.2018.00600
https://doi.org/10.17775/CSEEJPES.2018.00600
https://doi.org/10.1002/adma.201700335
https://doi.org/10.1109/IAS.2016.7731810
https://doi.org/10.3390/en15165973
https://doi.org/10.1016/J.APENERGY.2021.117205
https://doi.org/10.1016/J.APENERGY.2021.117205
https://doi.org/10.3390/su12020608
https://doi.org/10.1016/J.RENENE.2016.07.063
https://doi.org/10.1016/J.RENENE.2016.07.063
https://doi.org/10.1109/PVSC.2013.6744271
https://doi.org/10.1049/IET-RPG.2017.0596
https://doi.org/10.1049/IET-RPG.2017.0596
https://doi.org/10.1109/ICUFN57995.2023.10199326
https://doi.org/10.1109/ICUFN57995.2023.10199326
https://doi.org/10.3390/solar2010006
https://doi.org/10.3390/app12041872
https://doi.org/10.3390/en15124303
https://doi.org/10.1109/DASA59624.2023.10286780
https://doi.org/10.1109/DASA59624.2023.10286780
https://doi.org/10.3390/en16166050
https://doi.org/10.1109/ACCESS.2022.3148821
https://doi.org/10.1109/ACCESS.2022.3148821


International Journal for Holistic Research, Vol. 2, No. 2. Jan 2025 

13 
  

[19] Abdellatif, A., Mubarak, H., Ahmad, S., 

Ahmed, T., Shafiullah, G., Hammoudeh, A., 

Abdellatef, H., Rahman, M., & Gheni, H. 

(2022). Forecasting Photovoltaic Power 

Generation with a Stacking Ensemble Model. 

Sustainability. 

https://doi.org/10.3390/su141711083.  

[20] Demir, A., Gutiérrez, L., Namin, A., & 

Bayne, S. (2022). Solar Irradiance Prediction 

Using Transformer-based Machine Learning 

Models. 2022 IEEE International Conference on 

Big Data (Big Data), 2833-2840. 

https://doi.org/10.1109/BigData55660.2022.10

020615.  

[21] Li, Q., & He, Q. (2022). Hourly solar 

irradiance prediction based on enhanced 

incremental extreme learning machine. , 12255, 

1225519 - 1225519-8. 

https://doi.org/10.1117/12.2639376.  

[22] Alzahrani, A. (2022). Short-Term Solar 

Irradiance Prediction Based on Adaptive 

Extreme Learning Machine and Weather Data. 

Sensors (Basel, Switzerland), 22. 

https://doi.org/10.3390/s22218218.  

[23] Viscondi, G., & Alves-Souza, S. (2021). 

Solar Irradiance Prediction with Machine 

Learning Algorithms: A Brazilian Case Study on 

Photovoltaic Electricity Generation. Energies. 

https://doi.org/10.3390/en14185657.  

[24] Aliberti, A., Fucini, D., Bottaccioli, L., 

Macii, E., Acquaviva, A., & Patti, E. (2021). 

Comparative Analysis of Neural Networks 

Techniques to Forecast Global Horizontal 

Irradiance. IEEE Access, 9, 122829-122846. 

https://doi.org/10.1109/ACCESS.2021.3110167

.  

[25] Huang, X., Li, Q., Tai, Y., Zaiqing, C., 

Zhang, J., Shi, J., Gao, B., & Liu, W. (2021). 

Hybrid deep neural model for hourly solar 

irradiance forecasting. Renewable Energy, 171, 

1041-1060. 

https://doi.org/10.1016/J.RENENE.2021.02.16

1.  

[26] Maitanova, N., Telle, J., Hanke, B., Grottke, 

M., Schmidt, T., Maydell, K., & Agert, C. 

(2020). A Machine Learning Approach to Low-

Cost Photovoltaic Power Prediction Based on 

Publicly Available Weather Reports. Energies. 

https://doi.org/10.3390/en13030735.  

[27] Peña, D. (2023). Detecting Outliers and 

Influential and Sensitive Observations in Linear 

Regression. In: Pham, H. (eds) Springer 

Handbook of Engineering Statistics. Springer 

Handbooks. Springer, London. 

https://doi.org/10.1007/978-1-4471-7503-2_31  

[28] Jun, Z. (2021). The Development and 

Application of Support Vector Machine. Journal 

of Physics: Conference Series, 1748. 

https://doi.org/10.1088/1742-

6596/1748/5/052006.  

[29] Shakibian, H., & Nasiri, J. (2022). 

Probabilistic Twin Support Vector Machine for 

Solving Unclassifiable Region Problem. 

International Journal of Engineering. 

https://doi.org/10.5829/IJE.2022.35.01A.01.  

[30] Geche, F., Mulesa, O., Hrynenko, V., & 

Smolanka, V. (2019). Search for impact factor 

characteristics in construction of linear 

regression models. Technology audit and 

production reserves. 

https://doi.org/10.15587/2312-

8372.2019.175020.  

[31] Lim, H. (2019). A Linear Regression 

Approach to Modeling Software Characteristics 

for Classifying Similar Software. 2019 IEEE 

43rd Annual Computer Software and 

Applications Conference (COMPSAC), 1, 942-

943. 

https://doi.org/10.1109/COMPSAC.2019.00152

.  

[32] Luis, F., Zulima, F., & Denys, B. (2018). 

The uncertainty analysis in linear and nonlinear 

regression revisited: application to concrete 

strength estimation. Inverse Problems in Science 

and Engineering, 27, 1740 - 1764. 

https://doi.org/10.1080/17415977.2018.155396

9.  

[33] Du, M., Yu, Z., Wang, T., Wang, X., & 

Jiang, X. (2020). XGBoost Based Strategic 

Consumers Classification Model on E-

commerce Platform. Proceedings of the 2020 

The 6th International Conference on E-Business 

and Applications. 

https://doi.org/10.1145/3387263.3387284.  

[34] Denuit, M., Hainaut, D., & Trufin, J. (2019). 

Gradient Boosting with Neural Networks. 

Springer Actuarial. https://doi.org/10.1007/978-

3-030-25827-6_7.  

[35] Lu, H., & Mazumder, R. (2018). 

Randomized Gradient Boosting Machine. SIAM 

J. Optim., 30, 2780-2808. 

https://doi.org/10.1137/18m1223277.  

[36] Schonlau, M., & Zou, R. (2020). The 

random forest algorithm for statistical learning. 

The Stata Journal, 20, 29 - 3. 

https://doi.org/10.1177/1536867X20909688.  

[37] Olaniran, O., & Abdullah, M. (2019). 

BayesRandomForest: An R Implementation of 

Bayesian Random Forest for Regression 

Analysis of High-Dimensional Data. 

Proceedings of the Third International 

Conference on Computing, Mathematics and 

Statistics (iCMS2017). 

https://doi.org/10.1007/978-981-13-7279-7_33.  

https://doi.org/10.3390/su141711083
https://doi.org/10.1109/BigData55660.2022.10020615
https://doi.org/10.1109/BigData55660.2022.10020615
https://doi.org/10.1117/12.2639376
https://doi.org/10.3390/s22218218
https://doi.org/10.3390/en14185657
https://doi.org/10.1109/ACCESS.2021.3110167
https://doi.org/10.1109/ACCESS.2021.3110167
https://doi.org/10.1016/J.RENENE.2021.02.161
https://doi.org/10.1016/J.RENENE.2021.02.161
https://doi.org/10.3390/en13030735
https://doi.org/10.1007/978-1-4471-7503-2_31
https://doi.org/10.1088/1742-6596/1748/5/052006
https://doi.org/10.1088/1742-6596/1748/5/052006
https://doi.org/10.5829/IJE.2022.35.01A.01
https://doi.org/10.15587/2312-8372.2019.175020
https://doi.org/10.15587/2312-8372.2019.175020
https://doi.org/10.1109/COMPSAC.2019.00152
https://doi.org/10.1109/COMPSAC.2019.00152
https://doi.org/10.1080/17415977.2018.1553969
https://doi.org/10.1080/17415977.2018.1553969
https://doi.org/10.1145/3387263.3387284
https://doi.org/10.1007/978-3-030-25827-6_7
https://doi.org/10.1007/978-3-030-25827-6_7
https://doi.org/10.1137/18m1223277
https://doi.org/10.1177/1536867X20909688
https://doi.org/10.1007/978-981-13-7279-7_33


International Journal for Holistic Research, Vol. 2, No. 2. Jan 2025 

14 
  

[38] Hancock, J., & Khoshgoftaar, T. (2020). 

CatBoost for big data: an interdisciplinary 

review. Journal of Big Data. 

https://doi.org/10.1186/s40537-020-00369-8.  

[39] Hodson, T. (2022). Root-mean-square error 

(RMSE) or mean absolute error (MAE): when to 

use them or not. Geoscientific Model 

Development. https://doi.org/10.5194/gmd-15-

5481-2022.  

[40] Chicco, D., Warrens, M., & Jurman, G. 

(2021). The coefficient of determination R-

squared is more informative than SMAPE, 

MAE, MAPE, MSE and RMSE in regression 

analysis evaluation. PeerJ Computer Science, 7. 

https://doi.org/10.7717/peerj-cs.623.  

 

 

 

 

https://doi.org/10.1186/s40537-020-00369-8
https://doi.org/10.5194/gmd-15-5481-2022
https://doi.org/10.5194/gmd-15-5481-2022
https://doi.org/10.7717/peerj-cs.623

